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Broadcast channel with degraded message sets

Common message E is delivered to both Bob and Eve.

Private message B is delivered to Bob.

Eve is allowed to know B.
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Broadcast channel with confidential messages

Common message E is delivered to both Bob and Eve.

Secret message B is delivered only to Bob.

Eve is NOT allowed to know B.

Q: How can we measure Eve’s lack of knowledge on B??
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Weak&strong security criteria

n: the number of channel use
The weak security criterion requires

lim
n→∞

I(Bn; Zn)
n

= 0.

Is it really ensure the secrecy?? Suppose that the first
√

n symbols in Bn and
Zn are always the same and the rest are statistically independent. Although
Eve knows infinitely much information on Bn, it is judged secure!!!

The strong security [Maurer 1994] requires I(Bn; Zn)→ 0.
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Capacity region of BCC I

Which rate pairs for B and E are achievable?

The capacity region under the weak security was found by Csiszár and Körner.

That under the strong security remains unknown. I will show that it is the
same as the weak security.

Proof of the converse part is unnecessary. I will show the direct part.
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Capacity region of BCC II

R0: rate of E (common message)
R1: rate of B (secret message)

(R0,R1) is achievable if
U → V → X → YZ
R0 < min{I(U; Y), I(U; Z)}
R1 < I(V; Y |U) − I(V; Z|U)
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An interpretation of the capacity region of BCC I

U → V → X → YZ
R0 < min{I(U; Y), I(U; Z)}
R1 < I(V; Y |U) − I(V; Z|U)

Interpretation:
U: common message
V: common message + private (not secret) message
V → X: artificial noise increasing Bob’s advantage over Eve

The common message rate is the minimum of channel capacities to Bob and
Eve.

The secret message rate is the capacity to Bob minus that to Eve.
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An interpretation of the capacity region of BCC II

U → V → X → YZ
R0 ≤ min{I(U; Y), I(U; Z)}
R1 ≤ I(V; Y |U) − I(V; Z|U)

If

we set X = V , and

delete the term −I(V; Z|U),

then the region is almost the same as that of BC with degraded message sets.

This suggests

coding for BC with degraded message sets can be used for that for BC
with confidentiality, and

replacing nI(V; Z|U) symbols in the private message to Bob with random
garbage makes the rest of the private message secret to Eve.

I will formalize the above by the inverse hashing construction introduced last
week.
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Review of random coding for BC with degraded message
sets

R0: rate of the common message
R′1: rate of the private (not secret) message to Bob
Given U → V → X → YZ

1 Generate exp(nR0) codewords of length n according to PU .
2 For each codeword in the above step, generate exp(nR′1) codewords

according to PV |U .
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Adding secrecy to a code for BC with degraded message
sets I

En: common message
Bn: private (not secret) message in the degraded message sets
Sn: secret message
Fn: hash function from Bn to Sn

Structure of the transmitter
1 given Sn, uniformly randomly choose Bn from {b ∈ Bn | Fn(b) = Sn},
2 encode Bn and En by the encoder for BC with degraded message sets,
3 Apply the artificial noise PX|V .
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Adding secrecy to a code for BC with degraded message
sets II

En: common message
Bn: private (not secret) message in the degraded message sets
Sn: secret message
Fn: hash function from Bn to Sn

Yn: Bob’s received signal

Structure of Bob’s receiver
1 decode Bn from Yn

2 apply Fn to Bn to get Sn

The transmitter and the receiver have to agree on the choice of Fn in advance.
I will discuss this in the next slide.
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Pre-agreement on the choice of hash functions

Since I(Sn,Zn|Fn) = Ef I(Sn,Zn|Fn = f ) will be shown to be small, almost
every choice of hash function f makes I(Sn,Zn|Fn = f ) small. The transmitter
and the receiver can agree on the choice of f in advance, and the receiver can
compute Sn by applying f to decoded Bn.
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Calculation of the mutual information – Setup

We don’t have to care about the decoding error probability, because we just
use the code for BC with degraded message sets without change.

We need to evaluate I(Sn; Zn). I fix notations:
Fn: hash function (to be elaborated in the next slide)
Bn: private message (not secret) to Bob
En: common message
Λ: RV representing the selection of random codebook
All RVs below incorporates Λ’s effect.
Un: codeword for the common message
Vn: codeword for the common+private message
Zn: Eve’s received signal
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Assumptions

Sn is uniformly distributed (can be relaxed by the last week’s argument).

The distribution of En can be arbitrary.

Bn and En are independent.

Fn is from a family of two-universal hash functions.

Each function Fn is surjective.

{b ∈ Bn | Fn(b) = s} has the constant number of elements for every pair
of Fn and s.
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Family of two-universal hash functions

We will propose a construction attaching a hash function at the source node to
an existing code for a BC with degraded message sets.

Definition
Let F be a set of functions from a set S1 to S2, F a (uniform) RV on F . If for
all x1 , x2 ∈ S1 we have

Pr[F(x1) = F(x2)] ≤
1
|S2|

,

then F is said to be a family of two-universal hash functions.
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Privacy amplification theorem

(X,Z): a pair of discrete RVs
F : a family two-universal hash functions from X to S
F: an RV on F statistically independent of (X,Z).

I(F(X); Z|F) ≤
|S|ρE[PX|Z(X|Z)ρ]

ρ

=
|S|ρ

ρ

∑
x,z

PXZ(x, z)PX|Z(x|z)ρ

=
|S|ρ

ρ

∑
x,z

PXZ(x, z)1+ρPZ(z)−ρ

for all 0 < ρ ≤ 1.

All the logarithms, including ones in H and I, have to be the natural ones.

ρ = 1: Bennett et al. (1995).
0 < ρ ≤ 1: Hayashi (2009).
ρ→ 0 gives the best result for our application.
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Calculation of the mutual information – Outline

We first fix realizations of En (common message) and Λ (selection of the
random codebook)

Goal: Derive an upper bound that is concave with respect to the input
distribution.

By the concavity, we become able to include averaging by the random coding
Λ into the upper bound.
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I(Fn(Bn); Zn|Fn,Λ = λ)

≤ I(Fn(Bn); Zn,En|Fn,Λ = λ)

Giving the common message En does not increase I much.

= I(Fn(Bn); En|Fn,Λ = λ)︸                        ︷︷                        ︸
=0

+I(Fn(Bn); Zn|Fn,En,Λ = λ)

=
∑

e

PEn(e)I(Fn(Bn); Zn|Fn,En = e,Λ = λ)

≤
∑

e

PEn(e)
exp(nρR1)

ρ
×

∑
b,z

PBn,Zn |En=e,Λ=λ(b, z)1+ρPZn |En=e,Λ=λ(z)−ρ

=
∑

e

PEn(e)
exp(nρR1)

ρ

∑
b,z

PBn |Λ=λ(b)1+ρPZn |Bn,En=e,Λ=λ(z|b)1+ρ

PZn |En=e,Λ=λ(z)−ρ

=
∑

e

PEn(e)
exp(nρR1)
ρexp(nρR′1)

∑
b,z

PBn |Λ=λ(b)PZn |Bn,En=e,Λ=λ(z|b)1+ρPZn |En=e,Λ=λ(z)−ρ

by the uniformity of Bn. This makes the desired concavity.
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Rewriting the upper bound by U and V

∑
e

PEn(e)
exp(nρR1)
ρexp(nρR′1)

∑
b,z

PBn |Λ=λ(b)PZn |Bn,En=e,Λ=λ(z|b)1+ρ

PZn |En=e,Λ=λ(z)−ρ

=
∑

e

PEn(e)
exp(nρR1)
ρ exp(nρR′1)

∑
b,z

PBn |Λ=λ(b)[PZn |Bn,En,Λ=λ(z|b, e)]1+ρ

PZn |En=e,Λ=λ(z)−ρ

=
∑

e

PEn(e)
exp(nρR1)

ρ exp(nρ(R′1))

∑
v,z

∑
b:λ(b,e)=v

PBn |Λ=λ(b)︸                 ︷︷                 ︸
=PVn |En=e,Λ=λ(v)

PZn |Bn,En,Λ=λ(z|b, e)1+ρ︸                      ︷︷                      ︸
=PZn |Vn ,Λ=λ(z|v)1+ρ

PZn |En=e,Λ=λ(z)−ρ
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Rewriting with a concave function ψ

=
∑

e

PEn(e)
exp(nρR1)

ρ exp(nρ(R′1))

∑
v,z

PVn |En=e,Λ=λ(v)PZn |Vn,Λ=λ(z|v)1+ρ

PZn |En=e,Λ=λ(z)−ρ

=
∑

e

PEn(e)
exp(nρR1 + ψ(ρ,PZn |Vn,Λ=λ,PVn |En=e,Λ=λ))

ρ exp(nρ(R′1))

=
∑

e

PEn(e)
exp(nρR1 + ψ(ρ,PZn |Vn ,PVn |En=e,Λ=λ))

ρ exp(nρ(R′1))

=
∑

e

PEn(e)
exp(nρ(R1 − R′1) + ψ(ρ,PZn |Vn ,PVn |En=e,Λ=λ))

ρ

ψ(ρ,PZ|L,PL) = ln
∑

z

∑
` PL(`)(PZ|L(z|`))1+ρ

PZ(z)ρ
concave w.r.t. PL with PZ|L fixed.
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Averaging over the random codebooks

∑
e

PEn(e)I(Fn(Bn); Zn|Fn,Λ,En = e)

=
∑
λ

PΛ(λ)
∑

e

PEn(e)
exp(nρ(R1 − R′1) + ψ(ρ,PZn |Vn ,PVn |En=e,Λ=λ))

ρ

=
∑
λ

PΛ(λ)
∑

e

PEn(e)
exp(nρ(R1 − R′1) + ψ(ρ,PZn |Vn ,PVn |Un=λ(e),Λ=λ))

ρ

=
∑
λ

PΛ(λ)
∑

u

PUn |Λ=λ(u)
exp(nρ(R1 − R′1) + ψ(ρ,PZn |Vn ,PVn |Un=u,Λ=λ))

ρ

=
∑

u

PUn(u)
∑
λ

PΛ|Un=u(λ)
exp(nρ(R1 − R′1) + ψ(ρ,PZn |Vn ,PVn |Un=u,Λ=λ))

ρ

≤
∑

u

PUn(u)
exp(nρ(R1 − R′1) + ψ(ρ,PZn |Vn ,

∑
λ PΛ|Un=u(λ)PVn |Un=u,Λ=λ))

ρ

(concavity of exp(ψ) is used)
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Single-letterize the formula

∑
u

PUn(u)
exp(nρ(R1 − R′1) + ψ(ρ,PZn |Vn ,

∑
λ PΛ|Un=u(λ)PVn |Un=u,Λ=λ))

ρ

=
1
ρ

∑
un∈Un

PUn(un) exp(nρ(R1 − R′1) + ψ(ρ,PZn |Vn ,PVn |Un=un))

=
1
ρ

∑
un∈Un

n∏
i=1

PU(ui) exp(ρ(R1 − R′1) + ψ(ρ,PZ|V ,PV |U=ui))

=
1
ρ

n∏
i=1

∑
ui∈U

PU(ui) exp(ρ(R1 − R′1) + ψ(ρ,PZ|V ,PV |U=ui))

=
1
ρ

exp(ρ(R1 − R′1))

∑
u∈U

PU(u) exp(ψ(ρ,PZ|V ,PV |U=u))


n
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Under what condition the upper bound goes to zero?

Taking the logarithm of the upper bound we have

− log ρ + nρ

R1 − R′1 +
1
ρ

log

∑
u∈U

PU(u) exp(ψ(ρ,PZ|V ,PV |U=u))

︸                                                 ︷︷                                                 ︸
(∗)


I will show that (*)→ I(V; Z|U) as ρ→ 0.
This shows that the amount of random garbage required to make Sn = Fn(Bn)
secret from Eve is I(V; Z|U) per channel use. By choosing
R0 = min{I(U,Y), I(U,Z)} − δ and R′1 = I(V; Y |U) − δ, we have completed the
direct part proof.
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The upper bound goes to I(V; Z|U)

I will use l’Hôpital’s rule to find the limit of (*). Switching to the
Cover-Thomas notation.

numerator of (*) = log

∑
u∈U

PU(u) exp(ψ(ρ,PZ|V ,PV |U=u))


= log

∑
u,v,z

p(u, v, z)p(z|v)ρp(z|u)−ρ


Derivating the numerator w.r.t. ρ and substituting ρ = 0, we have∑
u,v,z

p(u, v, z) log
p(z|v)
p(z|u)

=
∑
u,v,z

p(u, v, z) log
p(z|v)p(v|u)
p(z|u)p(v|u)

=
∑
u,v,z

p(u, v, z) log
p(z, v|u)

p(z|u)p(v|u)

= I(V; Z|U)
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Discussion

The evaluation of I(Sn; Zn|Fn) is similar to Hayashi (2009) studying the
wiretap channel and the secret key agreement. Major differences are

We evaluated I(Sn; Zn,En|Fn) instead of I(Sn; Zn|Fn). Giving the common
message En to Eve does not worsen our evaluation.

We do not move averaging over U into ψ while moving that over Λ into
ψ. Otherwise we get much worse upper bound.

Overall, this presentation is not so technically novel relative to Hayashi
(2009).

The evaluation of mutual information is independent of that of decoding error
probability. We can combine our argument with the best research on the
decoding error probability for BC with degraded message sets, provided that
the type of random coding is the same. Provision of secrecy is separated from
error correction.

The proposed method is universal in the sense that it makes the mutual
information small as far as R′1 − R1 > I(V; Z|U).
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Practical construction of secrecy codes

Suppose that we are given single pair of encoder and decoder for a broadcast
channel with degraded message sets. We want to construct a code for BC with
confidential messages. If we do this, then the practical study of codes for BC
with confidential messages becomes unnecessary.

The size of secret message set S must satisfy

min
0<ρ≤1

|S|ρE[PX|Z(X|Z)ρ]
ρ

≤ acceptable value,

where X is the uniform distribution on the codebook.
When the number of codewords is, say 21000, evaluation of the left hand side
is practically impossible.

I introduce another form of the privacy amplification theorem so that we can
compute a suitable size of S. What follows is an extension on our result on
the wiretap channel (ISIT 2010).
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Another privacy amplification theorem

Assume that the given family of two-universal hash function F from L toM
satisfies that

|F−1(m)| =
|L|

|M|
, ∀m,

that the statistically independent random variable K and L obey the uniform
distributions on K and L, respectively, and that a fixed conditional probability
QZ|K,L is given. We also assume that F is statistically independent of K and L.
Then,

I(F(L); Z|F) = EFI(F(L); Z) ≤
|M|ρ exp(φ̄(ρ,QZ|K,L))

(|K| × |L|)ρρ
, (1)

for 0 < ρ ≤ 1/2, where EF expresses the expectation concerning the random
variable F,

φ̄(ρ,QZ|K,L) = log
∫
Z

(
EKL(QZ|K,L(z|K,L)1/(1−ρ))

)1−ρ
dz

and dz is an arbitrary measure.

Proof is omitted.
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Evaluation of the mutual information

Bn: set of the private messages (not secret)
En: set of the common messages
en : Bn × En →V

n: encoder for BC with degraded message sets
Bn: uniform RV on Bn

En: uniform RV on En, independent of Bn

Fn: hash function
Zn: Eve’s received signal

By another privacy amplification theorem we have

I(Fn(Bn); Zn|Fn) ≤
|Sn|

ρ exp(φ(ρ,Pn
Z|V ,Pen(Bn,En)))

|Bn × En|
ρρ

,

where

φ(ρ,QZ|V ,PV ) = ln
∑

z

∑
v∈V

PV (v)(QZ|V (z|v)1/(1−ρ))

1−ρ

.

This is essentially Gallager’s function E0.
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Numerical evaluation of φ

exp(φ(ρ,Pn
Z|V ,Pen(Bn,En)))

≤ max
Pn onVn

exp(φ(ρ,Pn
Z|V ,Pen(Bn,En)))

= max
P1 onV1

exp(nφ(ρ,Pn
Z|V ,Pen(Bn,En)))︸                            ︷︷                            ︸
(∗∗)

by Arimoto (1973)

(**) is concave w.r.t. P1, so its maximization can be computed in
practice.

minP1(**) is convex w.r.t. ρ, so its minimization w.r.t. ρ can also be
computed.
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Under which condition the second construction achieves a
rate pair?

Since φ is Gallager’s function, limρ→0 φ(ρ,PZ|V ,PV )/ρ = I(V; Z). The mutual
information I(Fn(Bn); Zn|Fn) goes to zero if R0 + R′1 − R1 > max I(V; Z).

Sufficient condition to achieve (R0,R1)
(R0, R′1) is achievable in the BC (PYZ|V ) with degraded message sets with
some artificial noise PX|V , and

R1 < R0 + R′1 −maxPV I(V; Z).
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What happens if we use the second PA theorem in place of
the first

The second PA theorem ensures the mutual information to be small if
R0 + R′1 − R1 > I(V; Z). When R0 ' I(U,Z) and R′1 = I(V; Y |U), by noting
I(V; Z) = I(U,V; Z) = I(U; Z) + I(V; Z|U), we have

R0 + R′1 − R1 = I(V; Z)

⇐⇒ I(U; Z) + I(V; Y |U) − R1 = I(V; Z)

⇐⇒ R1 = I(V; Y |U) − I(V; Z|U).

This means that if I(U; Y) < I(U; Z) then we cannot achieve that rate pairs.
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